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TECENICAL MEMORANDUM 1241

BASIC DIFFERENTTIAL EQUATIONS IN GENERAL THEORY OF
ELASTIC SHELLS*
By V. 8. Vlasov

1, Coordinates. - The shell shall be considered as a three-
dimensional continuous medium; for the coordinate surface, the mid-
dle surface of the shell shall be assumed parallel to the bounding
surfaces. Iet o and B be the curvilinear orthogonal coordi-
nates of this surface, coinciding with the lines of principal cur-
vatures, and 7 the distance along the normal from the point
(a,8) of the coordinate surface to any point (a,B,y) of the
shell (fig. 1).

The square of the line element in spatial orthogonal curvi-
linear coordinates is given by the formula
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(1.1)

where hl = hl(d,,ﬁ,)'), hz = hz(CL,B,)’), and h3 = h3(a,,[3,7) are
the so-called differential parameters of the first kind represent-
ing for the chosen coordinates given functions of «,B,7.

In the triorthogonal system of coordinates chosen as indicated:

by el )
A(l+k17)
b o 1 L (1.2)
2 B(l+k’27)
hy = 1 y,

where A = A(a,B) and B = B(a,B) are the coefficients of the
first quadratic form; and where ki = kj(a,p) and kp = ko(w,B)
are the principal curvatures of the coordinate surface on the lines
corresponding to B = constant and o = constant, respectively.

*"Ognovnye Differentsialnye Uravnenia Obshche Teorii Uprugikh
Obolochek,” Prikladnaia Matematika I Mekhanika., Vol. 8, 1944,
Pp. 109-140,
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The magnitudes h,, hs, A, B, k;, anmd k; are connected
by the relations - : .

~
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obtained from the equations of Lamb for the differential parameters
hi, h2, and hz defined by equations (1.2) and from the egua-
tions of Codazzi

o
2 em) =i 2
5 N (1.4)
A
5 (k14) = ko 3
From equations (1.2), (1.3), and (l.4) follow the equalities:
-l L, -1 )
oh,  Ohy 0hy
h =
e dady
> (1.5)
-1 -1, -1
Oh;  ohy 0“hq
h =
2% 3y 337

2. Fundamentel Equations of Three-Dimensional Problem of Theory
of Flasticity. - The six components of the strain tensor of a dense
medium are determined, in the system of coordinates assumed, by
the equations
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> (2.1)
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vhere uy = uy(a,p,7), ug = uB(a,ﬁ,7), and u, = u (a B,7) are
the components of the displacement vector of the poinﬁ (a«,B,7) on
the axes of the orthogonal trihedron, the vertex of which 1s at the
point («,B,y) and the faces of which coincide with the planes
tangent to the surfaces o = constant, B = constant, and

¥ = constant. The positive directlion for the displacements cor-
regponds to the direction of increase of the coordinates a, B, 7.

Equations (2.1) are optained from the'general formulas of the
theory of elasticity given for example in the book of 1. S. Leiben~
son (reference 1) for hz = 1.

The equatlons of egqullibrium of the general problem of the the-

ory of elesticity 1n the coordinates of the shell are presented in
the form
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(2.2)

where O and T are the normal and tangential stresses. The sub-
scripts denote, for normal stresses, the direction of the outward
(in the direction of increase of the corresponding coordinates)
normal to the corresponding surface; for the tangents, they denote
the surface of action of these stresses taken in pairs from the
conditions of their reciprocity. The components of the stress
tensor are considered positive if, when applied to the surface with
positive outer normal, they are directed toward increasing coordi-
nates. The magnitudes p,, P and D in equations (2.2) are
the components of the vector of 1ntensity of the volume forces.
Equations (2.2) are obtained from the general equations of the the-
ory of elasticity glven for example by Love (reference 2) for
h, = 1.

In the theory of shells, the stresses O, OB’ Tap = Tpas
applied normal to the section and lying in a plane tangent to
v = constant, are determined from the six stress components
expressed in terms of the strains. The remaining three components
of the stresses are found from the conditions of egquilibrium.
From Hooke's law, only the three relations referring to the
stresses Oj, 935 and Tap 2T© retained; these relations are

given in the form
Oy = (A+2p) A - 2p (éBB+e77)

Op = A+2e) &4 - 2p (em+e77) (2.3)

TG,B = TBG' = peaB

= 0
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where A 1s the volumetric dilation and A and p are the coef-
ficlents of elasticity of Lamé.

The equations of equilibrium (2.2) , on the basis of equa-
tions (2.3) and (2.1) after & number of transformations using, where
required, the relations (1.3), (1.4) and (1.5), are given in the
form

. on | P
1 oA 1 90X 0 ay o
(A+2p) hy S -2u h—15——+2pABKua 2u 5—(—-— ) 5_<b iy )+h1hz-o

Bu
1 24 1 90X 3 (1 Pg
(M2u) 7 55 + 2§ Sq *+ 2nABEUg - 20 ay(h 38 )* ba 67( 2p, [rhymz ©

S (Bkou,) + BB_B (Akjug) + 2ABKu7:| +

du T o}
My, 0 ([ xm), 8 ( ), [y Py _
4. AB (H+Ky) 55 5 (hz ) 7] ( ) + > (hlhz) g 0

(2.4) y

~2(M2u) (H+Ky)ABA + 2u [i

where K = K(a,8) and H = H(x,B) are the Gaussian and mean cur-
vatures of the coordinate surface, respectlvely.

K = kgkp

(2.5)

1
H 5 (k1+k2 )

The volumetric expansion and the normal component (the pro-
Jection on the normal to the surface 7 = constant) of the ele-
mentary rotation of the shell are denoted by A = A(ax,B,y) and
2X = 2X(a,B,y), respectively. In the following discussion 2X
shall be denoted simply the normal rotation. The volumetric expan-~
sion and normel rotatlion are determined in terms of the displace~
ments uy, Ug, and Wy in the coordinates of the shell by the

formulas
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Equations (2.4) in orthogonel coordinates for hz = 1 are the
general equations of equilibrium of an elastic body. The first two
of these equations express the tangential equillbrium of the three-
dimenslonal element dadﬁdy/hlhz of the shell, that is, the equi-
1ibrium of this element in the plane tangent to the surface
v = constant. The last equation refers to the equillbrium of this
element in the direction of the outer normal to the surface
7y = congstant. Equations (2.4) differ from the equation of the gen-
eral problem of the theory of elasticity in displacements or
straing in the fact that each of them contalins both static and
kinematic magnitudes.

(2.8)

Y

3. Displacements and Strains of the Shells. -~ The theory of
shells is based, as 1s known, on the hypothesis of Kirchhoff-Love
according to which a rectilinear element normal to the middle sur-
face of the shell remains, after deformation,rectilinear normal to
this surface and of the same length. This hypothesis 1s equivalent
to the assumption

€qy = OBy = €9y = 0 (3.1)

and leads, for the displacements uy, ug, &and u, of an arbi-
trary point (a,B,y) to the formulas

]

v, = (1+ky7) v - %

(3.2)

¢ {¢

Y
1+k v - £
( 27) B

Uy =W .J

wvhere u = u(a,f) and v = v(a,B) are the tangential displacements
(in the direction of the tangents to the lines B = constant and
o = constant) of the point (a,B) of the coordinate surface, and

ug
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W= w(m,B) is the displacement of the same point in the direction
normal to this surface, positive in the dlrection of 1ncreasing
coordinate y (fig. 25. ' :

For the purpose of presenting a more accurate theory valld
not only for shells of medium thickness but also for thick shells
another hypothesis, which is a generallzation of that of Kirchhoff-
Love, will be used.

It shall be considered that each of the three components u.,
up, and Uy 18 represented as a functlon of ¥y by a linear law,
setting

ow
u, = (L+ky7) v - % = ﬁw
> (3.3)
= (l4koy) v - 2 ¥
g (1+koy) v 5 3%
Uy, = w + yw¥ Y,

where u, v, and w have the same values as in equations (3.2);
w¥* = w¥(a,B) 18 a magnitude that deperds, like uw, v, and w,
only on the two variables «,8 and i1s the relative elongation of
a normal element of the shell (constant under the assumption made
here over the entire length of this element). It is easy to see
that with equations (3.3) equations (3.1), which express the funda-
mental hypothesis of the present theory of shells, do not apply.
With the introductlon of the deformation of elongation w* of a
normal element of the shell, all the six components of the strain
tensor (2.1) receive values different from zero.

Equations (3.2) establish the kinematic model of the deformed
state of the shell. Thils state, In the general case, 1s made up of
two gstates of which the first is determined only on the tangential
displacement u,v of the point of the coordinate surface (w, w*
in this case being equal to zero) and in the second only by the
normal displacement w and the elongation w¥* (u,v 1in this case
being equal to zero). The deformation of the shell determined only
by the tangentlal displacements u,v shall be denoted the tangen-
tial deformation for briefness. This deformetion is characterized
by the fact that an arbitrary point of the surface y = constant
after deformation does not go beyond the limits of this surface as
a two-dimensional space. An elementary layer of the shell dy for
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a tangential deformation does not change its shape and position in
space and undergoes deformations of length and shear at the sur-
face 7 = constant as a two-dimensional space (in the general case
for K¢ O non-Euclidean). A deformation of the second kind
determined only by the normal displacements w and the elongation
w* will be called a normal deformation of the shell. For this
deformation, an arbitrary point (G,B,7) of the surface ¥ = con-
gtant passes wlth respect to this surface into the third dimen-
gion. A normal deformation is accompanied by a change in shape

of the surface.

In setting up the kinematic model determined by equations (3.3)
for all six components of the deformation tensor, by virtue of
equations (2.1) and (1.2), a definite law of variation with thick-
ness of the shell 1s obtained.

(o7e
in the variable 7y gilves

n N
a = € T E Xin 7
Onp = €5 + X e
BB 2 2n ?
GGB = @+ E Tn 7n

(n=1,2,3, . ..)

Representation of e__, e8B s and ®qp in the form of seriles

@
]

(3.4)

where the coefficients of the series &, €5, W, Xy, Xgp,

and T, eoach depends only on the displacements wu, v, and w¥
of the point (a,B) of the coordinate surface. By substituting
the displacements 1., ug, and Wy determined by equations (3.3)
on the right-hand sides of the corresponding equations (2.1) and
then by representing the magnitudes hj;, hg, and thelr ratios

(direct and inverse) in the form of series
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' 2.2 3.3
hy =.% (I-ky+K -k7 +...) A
T ' 2.2 -
hy = %.(1 -kpy + k2 - k7Y o+ . . L)
h (3.5)
1 B 2 2.3 }
—~_-—|:1-(k1-k2)(7-k17. + %y -E[
b, A& |
B 2 2.3
» — == 1+ (k- kp)(7 - kp?” + K7y -~ . . L)
h; B J

and referring to the last two of relations (1.3) and relations (1.4),
after a number of transformations for the coefficlents of the ser-
ies (3.4) the following equations are obtained:

€ = 10u, 1 oAy, kqw 'w
A da AB OB
€2=%%:iu+%g§+k2w
w =A% /u),B3 [u
Bog\A Ada\B
Xip = (0PN 0, LYz, 1 (Low) L L 38 %] |
dc A OB B A 0o \ A o Ap2 B OB
n-1 n-1{0ky akz v 2 10 /1 ow 1 OB ow
Xen = (-1) kg |:a—@‘1+5“§'k2"'§8€<§'55>';é;a';&?+k2"*

(3.8)
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The remalning strains ®qys  ©Bys and ©yy depend only'on w¥,
After expanding them in a series in powers of 7,

2
ay = (y - klyz + ky 73 - e e ) %-%Ei
> 3.7
egy = (r - kg72 + k2273 - e e ) % ggf (3.7)
Syy = W J )

In the following discussion, formulas for the volume expansion A
and the elementary rotation 2X will be required. When these mag-
nitudes are also repregsented in the form of series iIn powers of 7

E n
AO + Any
XO +:§: xnyn

Then by making use of equations (2.8) and (3.5) after a number of
transformations, using relations (1.3) aud (1.4) for the coefficients
of the series (3.8),the following formulas are obtalned:

>
i}

(3.8)
X
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AO=€
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- -1 ok -1 ok
An=xln+x2n=(-1)n1{<k1n1&;l+kznla_aﬁ -3
A

ok ok
L g n-1%%2\v . n-1{10 (1ow), K _1 OAdw
<1 o8 A E ! A X ABa. ABzaaaa

-1/1 9 /1 1 -
2 Iiggg (_ B‘_w)+ L. 2_1113,_ %{l (k1n+l N kgn+1)w . (kln_"' kzn)w%

J

4. Analysis of Kinematic Relatlons. Corrections and Additlons

-

(3.9)

to Theory of Love. - Equations (3.4) and (3.6) for the components
of the deformations have a common character and were obtained in
correspondence with the hypothesis (3.3) assumed for the displace-
ments. For w* = O from equations (3.3, 3.4, and 3.6), there are
obtained equations for the displacements and the deformations of
the shell having an inextensible normal element and followlng the
hypothesis of Love (3.2). The magnitudes Xll’ X21, and T,
defined by equations (3.6) for n=1 and w* = O and the first
two representing bending deformations (variation of the principal
curvatures k; and kp) and the third the torsional deformation,
differ from the corresponding magnitudes X3, X2, and T , which
were used by Love. By setting w¥ = O in the lagt three equa-
tions of (3.6), \
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X _ak1u+aklv_k2w_15(law>_ 1 dA dw )
J1=——ct+t—=-k V- =(=—=)- = ==
oo A OB B A oo \ A da ABZ OB OB
Okp Okp 2 13 (1ldw 1 OB w N
215 2% 3 kzw'ESE(iaa_)'EéEa? (49
A _k)éé_(z)_ai@ 2 (P 1BW 1w
1= Y172/ g3 \a/ Ada \B/| 4B\ 38 A oo B B OB dq

From these equations, it follows that for tangential deforma-
tions (in the case w = O) the changes in curvature X;;, and Xp;
are determined as linear algebraic expressions relative to the dis-
placements u and v with coefficients proportional to the partial
derivatives of the principal curvatures ky, and k; of the unde-
formed surface. The expression for the torsional deformation will,
as is to be expected, be symmetrical with respect to the coordinates.
The same properties, as seen from equations (3. 6), are possessed
also by the remaining components Xi,, Xo5,, and T, for
n=2,3,4, ... . Inparticular, for the spherical shell a
result is obtained that generalizes in a certain serse the theory of
the bending deformation of a plate as based on the hypothesis of
Kirchhoff. This result can be formulated in the following theorems:

Theorem I. - The deformations of 2longation and shear egq,
epg, end egp and the volume deformation A of a spherical shell
in the case of tangential deformations (that is, for w = 0) are
uniformly distributed over the thickness of the shell (do not depend
on 7) and are determined only by the deformations of elongation
and shear €;, €5, and w of the middle surface. An exception
to the uniform distribution of the magnitudes e,,, g s and ey

over the thickness of the shell arises only as & result of normal
displacements. A change in the shape of the spherical shell char-
acterized by the parameters of the change in curvature xll’ X215

and T; 1s due only to the normal displacement w.

. Theorem IT. - The normal rotation 2X of the spherical shell
is determined only by the tangential deformation (the variables u
and v) and remains constant over the thickness of the shell. In
the case of normal deformation, the normal rotation 2X 1is equal
to zero.

This result, obtained on the basis of the analysils of the gen-
eral formulas of the preceding section for the spherical shell, may
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be arrived at directly in the following manner. It is assumed that
the spherical shell as a deformed body is, at one of its bounding
surfaces (for example, the inner), in contact with & rigid spheri-
~cal base so that an arbitrary point of the shell can be freely dis-
placed along the surface of this bage without going outside the
limite of this surface. Such a model corresponds to the case of -
tangentlial deformation of the shell. Now at the point (a,B)

some normal section of the shell, in general arbitrary with respect
to the chosen coordinate lines a &and B, 1is assumed. The lin-
ear normal element, as the shell passes into the deformed state,

" remalng, by the Love hypothesis, normal to the base surface and
takes on a new position determined by the rotation of this element
with respect to the center of curvature (in the case of a sphere,
common for all normal elements). Let Ml'MZ' be the projection
on the plane of the chosen sectlon of the element M;M, after
deformation (fig. 3). Further let £= MM;' denote the proJjection
on the plane of this section of the vector of the total displace-~
ment of the lower point M; of the element. Then the dlsplace-
ment §7 = MM' of an arbitrary point M of the element MM, 1in

the plane of the chosen section will be equal to

£, = E(L+ky) (4.2)

where k = 1/R 18 the curvature of the inner surface of the shell
and 97 1is the distance of this surface to the point M consldered.
The corresponding elongation of the tangential element

ds = (L+k%y) RAP 1s determined by the equation

o 13 dt
e = asy = R(l+k7) % [(l+k7)£:l = EBE (4.3)

From equations (4.2) and (4.3), it follows that whereas the
tangential displacement ¢ of the spherical shell is & linear
function of the coordinate’ 7, the deformation of elongation e
does not depend on 7¥. The gsame result can also be obtained
directly fram equations (2.1) for the deformations Oqas g s

and a3 for the values entering the following formulas:

k1 = ko = k = constant W
- 1
fny = Bhp = 77 | & (4.4)
u, = (L+ky)u
ué = (L+ky)v : y,
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In the same way on the basis of the second of equations (2.6),
the second theorem can be proven.

In constructing this theorem, Love represents the components
of the deformation ey, epp s and B in the form of linear

expressions relative to the parameter 7.

Oua = €1 + X7

aa
GBB = €2 + x,27 (4.5)
€up = W+ Ty

and for the parameters of the change in curvature Xl, Xo, and T
gives the equations

_13 124 (L2 (1a) e
¥1=35 B v g (V) i Aaa> ;52 OB OB

1 OB 3 10 (1ow 1 OB ow
Xe = 5 5 (aw + 555 (kev) - 55 (B 38/ " %R da 3 (2.6)
=L (py) - LY __1__6_(;8_‘1)+L6_4§z

" Ao 2 S "t T A3 \BOB/ Zp dB

These equations differ essentially from equations (4.1). The
magnitudes Xj, Xp, and T determined by lLove as coefficients of
the second members of equations (4.3) are in contradiction to the
theorems Jjust proven for the spherical shell. The difference noted
here in the determination of the magnitudes Xl, X5, and T by
equations (4.1) and (4.6) is explained by the fact that Love and
other authors (in particular, Timoshenko (reference 3)), following
Rayleigh, start from the assumption of the inextensibility of the
middle surface. This assumption stands In certain contradiction
with the geometry of extensible and flexible surfaces.

In recent years a number of papers have appeared that refine
to a greater or less extent the theory of thin shells of Love.
The most Interesting and original of these are the investigations
of Krauss (reference 4), N. A. Kilchevsky (reference 5), and
A. I. Lurie (reference 6).

5. Fundamental Differential Equatlions of Equilibrium of Elastic
Shells. - The general equations of a shell possessing deformable
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normal elements 1s obtained by reducing the three-dimensional prob-
lem of the theory of elasticity to two-dimensional starting from
equations (2.4), retaining in the series (3.8) the first three
terms, and applying the principle of Lagrange corresponding to the
kinematic hypothesis (3.3).

An element of the shell ABSdadf, having an infinitely small
area ABdadf on the middle surface and a finite length B equal
to the thickness of the shell, possesses according to the kinematic
model seven degrees of freedom; nemely, 8lx degrees with respect to
the displacements of the element (three linear and three angular)
in space as a rigid body, and one degree characterized by the
change in length of the element. Corresponding to these degrees
of freedom seven equations of equilibrium must be obtained. Of
these equations, the first six refer to the equilibrium of the
element in space as a riglid body and the seventh may be obtained
by equating to zero the work of all the external and internal
forces of the element ABBdadB against displacements and deforma-
tions corresponding to the unit elongation w* = 1. It should be
noted that the equations of equilibrium of an element may also be
obtained on the basis of the principle of virtual displacements by
equating to zero the sum of the work of all the forces (in the
glven case only the external, because the element is considered as
a rigld body) for each of the six possible unit displacements.

By the msthod assumed here, one of the condiltions of equilib~
rium of the element as a rigld body, namely the condition corres-
ponding to the rotation of the element about the normal to the mid-
dle surface and given in the theory of Love, the sixth nondiffer-
ential (relative to the shearing forces and torsional moments) is
satlsfled identically because of the relation Tgp = Tgg, used in

deriving the general equations (2.4).

Thus, starting from equations (2.4) and applying the principle
of virtual displacements, it will be necessary to obtain for an
element of the shell only six equations, one of which (called above
the seventh) according to its physical meaning represents the gen-
eralized condition of equilibrium of the element ABSdadp having
& strain w* expressed as a function of 7.

Substituting in the left sides of equations (2.4) the dis-

placements u, ug, and U, according to equations (3.3), the

volume dilation and the normal increment A and X according to
equations (3.8) (in which it is necessary to retain only the first
three terms, that is, to 72 inclusive and reject the others) and
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hy and h2 eccording to equations (1.2), three expresslons are
obtalined each of which contalns terms with powers of 9 up to the
third inclusive. -

The three magnitudes thus obtained represent, according to
their physical meaning, the components along the axes of the mova-
ble trihedron on the surface ‘¥ = constant of the vector of the
external force acting on the three-dimensional element of the

shell EEEE

hyhp
v, w, w¥, Ay, Ay, b3, Xg, Xy, and X, and static magni-
tudes Tows Togs Oys Pys g and 7p,. In passing to the two-
dimensional element of the shell ABBdadf, the work of all the
forces acting on this element and determined 1n this manner must
‘be egual to zero on each of the five possible dlsplacements as a
rigid bvody.

dy and expressed In terms of the kinematic magnitudes

Corresponding to these displacements and by virtue of hypothe-
sis (3.3), each of the first two equations of (2.4) must be by
dy and 74y and the third by 47, Integrated with respect to ¥

between the limits 7 = - % 5 to y =+ % 5, and the result

equated in each case to zero. Thus five equatlions are obtalned
containing in addition to terms with the kinematic magnitudes u,
v, w, w¥, Ay, A1, A2, Xp, X1, anmd Xz also terms with the
transverse forces Ny and N, arising from the tangential
stresses Trm and T?B‘

+ % 5] )
1 Trx
-5 o) L
(5.1)
+ 1 3)
2
1 T
Ny = % Hfﬁ dy
-5 5 J

In order to obtain the sixth equation corresponding to the lin-
ear strain of w* of the normel element of the shell, the left
gide of the third equation in (2.4) must be multiplied by 7dy
and the integral of thls expression between the limits
Y= - % 5 to 7y =+ % ® equated to zero. When it is remembered

that
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1
+ =5
5 +

3 (o]
syl )72 -
5 7\ 1102

[ R ol
o

1
Ly
*+3

5 _ s
Ly - i—%— dy (5.2)
hjhp 1he

-
o

1 1
" -z?®
where the first term refers to the work of the external and the

second to the work of the internal normel forces of the element ABS
for the normel dlsplacements Uy = yw¥ for w* =1, determining

Tyqs Tops, and O, In terms of the deformations by the equations
2y 1 ow*
Ty = -k =
v uly 17 ) 2 S5a
_ 2y 1 ow*
Typ = u(y-kp7) 3o (5.3)

g, = K(A0+A17+A272) + 2pw*

and representing the remaining terms of the third equation of (2.4)
in the form of a finite series In powers of ¥, an equatlon is
obtained in which the unknown will be only one of the kinematic
magnitudes.

Thus there are six equations with respect to 12 functions,
the four basic functions w, v, w, and w*, the sgix func-
tions 44, 83, 83, Xg, X;, and Xy giving the coefficlents

of the first three terms of the series (3.8) and the two transverse
forces Ny and Np.

These equations, upon eliminating the forces Nj and Ng,
reduce to four equaticns. Neglecting the small terms with k 182/12,

k2252/12, and klkzsz/lz in the expressions 1 + k2182/12,
1+ k°,8°/12, and 1 + kjk,8°/12 finally
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OA 2 oA 2.4 ) ' ( X, 2 X 2 ax>
1 0 o 1 ) 2 1 0 o] 1 3} 2
O+2n) z(ar"?ﬂa‘.*fﬁaa - 2 T +
| 1
A

ow 1ow* 1

2].1](1 (kzv-:-B-gE)— Eg-ﬁ;—+g(Y+kzmu’) = 0

2 oA oA

8 1 | o (B 0 o [A 0
O +2u) 1—2 — l:_E <X ko _E> + SE(E kl SB—)]- 2(A+21) HAog +

2 oA oA
Aoy) o L (o (BY) 0 fAa%h) oy 8% xa
(h+2u) 12AB[50L<ABG,> BB(BBB)] (M) 5 (Kaplidg) -

(5.4)

wvhere X = X(«,B), Y = ¥(«,B), and Z = Z(a,B) are the components
on the axes of the movable trihedron of the vector of surface
intengity of the load computed for the stresses Tays Tpy>s and Oy

on the boundary surfaces vy = % 3, ry= -~ % d and for given volume
forces ©Pq, Pg, and D, by the formulas
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\
1 1
~t S a) . + 35 5
T
. X = EL-_ ——EL-d7,+ =74
AB 1 5 hyh, hyhs 11 5
~vT2 2
1 1
N 5 o] ; + 5 ]
Y=L _EE_.dy + IEZ_ } % (5.5)
AB 1 R hqho hqhy 1 R
T2 "2
1 1
5 o] + 5 5
P
7 = _l_ -—L. d_7 + _EZ_ }
AB|l 1 Bhihp bihy 11
-z 5 -5 5

~/

The magnitudes m, = m (a,B) and mg = mB(a,B) are the
moments of all the forces (surface and volume) relative to the
axes o,B of the movable trihedron of the mlddle surface:

1 1
+§5 +§5 w
T
m, = L [ 8 ydy + | BL_ o
4B | R L hyhap 1
—'2‘8 "58
L (5.6)
1 1
+§6P . +§6}
1 @ ay
== T Y 4 ==Y
B AB[ 1 hihp hh, 1
-§8 -56 J

Finally the megnitude 2¥ = Z*(a,p) 1s the new generalized
static magnitude corresponding to the elongatlion of the normal ele-
ment and determined by the equation

+ 3 + 3 3} .
oy '
: D.
g% = L —2_ iy 4| —2— } (5.7)
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In the case where only surface forces act on the shell, the
first components in equations (5.5) to (5.7) drop out.

To the equilibrium equations (5.4) must be added the equations
for the components Ay, A, and A, of the volume dilation and

Xos Xl, and X2 of the normal rotation. According to egua-
tions (3.9),

_1._[._ (Bu)+———(Av)]+2Hw+w*
OHu OH v O({Bowy O [Aow 2 .2
Al = Z(Bm A+§B— :E)—E B-;(A a@) (B 5[3)] -(k ]_+k z)W + ZHw*
R @) 2R () Tl L2 (L), L 34w
by =-Zl5 (K1+k72) 2t (k%1+k°5) 1;|+klE*5a<A aa)+ Z 55 aﬁ]+

_L_B_l&w)iaBaw 3 .3 v (2 .2

Xo=é—}ﬁl—:% (Bv) -B—(AuE[
B O (v A d /u
Fr=-t z$(§)+§5§(zﬂ
X, = 1 |x Iii(x)+kzéi(z)+azw _1Aw _ 138
2 143\B Bop\A/ OO A OB & B o OB
(s.8) -/
In equations (5.4) and (5.8),
K = kky
HE = % (ky+kp) (5.9)
1
L=§(k1-k2)

Equations (5.4) together with equations (5.8) form a complete
system of differential equations of the shell. To these equations
the boundary conditions for each particular case must be added.
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~ For this purpose, the internal generalized forces must be
determined. These forces, corresponding to the degrees of freedom
of “the normal. deformable element, will in any normal sectlions of
the shell consist of the tangential (normal and shearing) forces T
and S acting in the plane tangent to 7y = O and corresponding
to the displacements of the element parallel to this plane, the
transverse force N directed along the normal to ¥ = O and cor-
responding to the digplacement of the element along the normal to
the middle surface ¥ = 0, the bending and torsional moments G
and H corresponding to the angular displacements of the element
with respect to the tangent axes of the movable trihedron and,
finally, the new generalized (statically eguivalent to zero) trans-
verse force N¥* corresponding to the elongation of the normal
element.

All of these forces, with the exception of the transverse
force N, can be expressed in terms of the fundamental kinematic
magnitudes u, v, w, and w*¥ by setting up the work of all
(tangential and normal) stresses of the normal section considered
over unit displacements of the normal element, translational in
the tangent plane, translational in the direction of the normal
to the middle surface, angular relative to the axes in the tangent
plane, and in the displacement of the points of the element u, = w*y
for w* = 1.

For the internal forces on the two basic normal sections

a = constant and P = constant (fig. 4), the following equations
are obtained:
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To =

1

~+ 55
1 o“d (A+2u)8 e+-5-2—(k-1c)x + A3 (eotvt)
B | 1 Bp VWP LR TIE Yerh 2
vo T 5
~F %5 .
();5 52
1 — ay = (M+2p)b [ez + — (kl-kz)xz]+ AB(e y+w*)
A h 12
-Llp 1
Vo2
~+ %6 .
1 Taa ®
§ —1? dy = ubd [u) + ﬁ (szl+T2)]
J-538
~+ % o)
T 2
o]
J-58
+ % o]
1 " 9%, 5°
-5 = ydy = - 3 N+2p) (Xq+ko €) + M(Xptkoez+kaw*)
J -Llst
2
~+ % t+)
1 o, 83
J- 50 :
+ %8
T 3
1 B o o
) f L By 7= (o)
-5 3

+l5
G T
-1 af = - B k
Aflahl e e
T2
+%6
1 . u” 1 owx
B | 1 &b i vl g
-5%
2
+%‘-6
1 T2 4, o uE L 3%
A 1 m 12 B 0B
-ib
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In these equations, .
13u-, 1 %A X
,€l=zg+_A_—B—BV+ lw
€2=%g§uf%.§§+k2w
w,&.a_(@.)+§i 1)
BOg\A/ Adal\B
oy y Sk y 2 13 /13w _ 1 dAdw
Xl-a-a—x+$'§'k1“'z$<z$>'E‘B'S's’”l"* }
okg y Okpy o 13 /LdvW\ 1 3B w
2 % & S’pS"E'kZ-"'ESE<553>'F§$&T*k2"*
e g[S (822 (D) _z_(az_w_;a_a_a_w__;a_w_w>
1= 1 BBB(A) A 3 \B AB\OxdR A Ox OB BOR
o G, A2 (8 ai(xﬂff“z(a_zw_-;a_@a_w-;a_.«.a_w
B OB \A A da \B/| 4B 3 Ada 08 B OB da |
(5.11)‘—J

Depending on the character of the problem, the boundary con-
ditions may be purely kinematic, purely static, or of the mixed type.

In the case of kinematic conditions for the normal element of
the shell and the boundary surface, there must be given in the boun-
dary surface three displacements of the midpoint of the element
along three mutually perpendicular directions, the angle of rotation
of the element relative to the tangent to the contour curve of the
middle surface and finally the normal displacement of any other
point of the element. Altogether there will be five independent
kinematic conditions, which together with the fundemental equa~
tions (5.2) and (5.8) make the problem entirely determinate.

If the boundary comdltions are given 1n terms of stresses,
there will be in this case five independent condlitions, the four
usual conditions of the moment theory and one with regard to the
generalized (statically equivalent to zero) transverse force N¥.
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6. Shells of Medium Thickness. - By neglecting in equa-
tions (5.4) and (5.8) the small terms with tangential displace-
ments u and v, which contain as factors the products of the cur-
vatures ki and kp, and their derivatives for the shell of medium

thickness

w* = 0 A

- B
LR ; (6.1)

E
YT J

and neglecting, in correspondence with this the last equation of (5.4)

A\ "F T& "1z ae 6 lB_B 12 o8

(1+D)<Ku - 75— %’) (X-klmﬁ) =0
dg 52 OBy g2 Mg\ (axo 2 X, g2 X
1(%0 & 1 82 9 1(%% 82, SX1 2 Xp
E(SF*?HSB_*E&T>+(1'U)K = e +126a>+
k
(1-v) <Kv - ?1 g’—ﬁ‘i> (Yéiom,) = 0

2
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where now ) —

1 {9 9
AO=EEBE(Bu) +5§(Avﬂ + 2Bw

A=2<§_H..E+B_H1-(k2+k2)w-i_a_§§! + O (AW

1 du A OB B 1 B {oa\ A 0B \ B oB
_E|3 (B é_é.'iai;a_w_i(;éw_

Az‘m_[aa(ma) 3 (BBB):I+AB[BG,(ABG,) * 3 B_BB)+

BOB OB A da da

1 |9 e}
- as[s; %) - 55 ““‘ﬂ

o
|

H

1]

i
—
> |t
&le
TN
W<
S’

+
o
&
> s
S——
1

—
(6.3)
For the internal tangential forces and the moments,
ES o)
Tl = N [Cl +U€2 - -]—--2— (kl-kz)xl]
p E 8% 1 k )
2= 7 2 €z +vey + 73 (k-kp)Xp
2
ES [ )
S T ——— W+ — (k T +T )]
TR D) 12 212
2
ED 3
Sp = = —=— | W+ 2= (kqyTq+T
2 2(1+v) [u) 12 (yTy 2)] (6.4)
6 = - Es° [xl + koey + v (Xp+k cz)]
LT 12(1-4) . 3
3 J .
oz = - 222Xz + kiez + v(xy+iy )]
12(1-17)
E&S
H, = Ta4+koWw
17 Za(T+v) (71 iz @)
3
ES
H, = ~ T.+k.w
2 24(1+D) (7 +kyw)
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where the stralns €;, €5, ) X3, Xz, T, and T, are deter-
" mined by equations (5.11), in which (fourth and fifth) w* must
be set equal to zero,

Equations (6.2) to (6.4) refer to shells of medium thickness
and were obtained with an accuracy up to terms with 53/12 in
strict correspondence with the fundamental essumption (3.2) because,
in the first place, the given equations (4.1) for the components
of the changes in curvature X;, Xy, and T,, Iin contrast to
equations (4.6) of Love are accurate; and in the second place, these
equations contain additional terms_arising from the moments, namely,
the terms with 4,85/12, end X;8°/12, which are absent in the
present moment theory constructed on the basis of the magnitudes e,

epp s and ) in the form of equations (4.5) and not in the form

Oaq = € + X117 + X178

- 2 6.5
oap = €5 *+ Xp17 + Xpp7 F )
& .= W+ T 7 + T 7C
af 1 2

which lie at the basis of the theory glven here. Thls theory and
the more general one given 1in the preceding section and referring
to thicker shells 1is in full agreement with the fundamental theorems
of the theory of elasticity, in particular, with the theorem of
reciprocal work, which, as shown later for the example of a cylin-
drical shell, does not correspond to the theory of Love.

7. General Technical Theory of Thin Shells. Two methods of
Solution of the Problem. Generalization of the Maxwell and Sophie
Germaln-Lagrange Equations, - For thin shells, further simplifi-
cation of equations (6.2) to (6.4) is possible. Eliminating from
equations (6.2) the functions 4p, Ay, 43, Xg , X3, and X,
with the ald of relations (6.3), three equations are obtained in
the three functions u, v, and w. The first two of these equa-
tions, when multiplied by &, will each consist of terms propor-
tional to the thickness & and terms proportional to magnitudes
consisting of the product of 8°/12 by the curvatures. k; and kp
or the derivatives of these curvetures.

In the third equation, in addition to_the terms of this type,
there will enter a term proportional to 83/12 and independent of
the curvature of the shell.
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The rather extensive theoretical and experimental investiga-

tions made by the author show that for thin shells ghe relative
: 3

thickness 8k . = 8/R , < 1/30; the terms with %5 Xy, %E X,
3 Jk 3 dk 3 dk . 83 0k :
§___1, §__3, 5__1, and & 2 entering in the funda-
12 da 12 da 12 op- 12 oB
mental equations are factors of second-order values for the dis-
placements u and v. Without sensible error these terms, as
shown in the work on cylindrical shells (reference 7) and thin-

walled rods (reference 8);, can be neglected. Correspondlngly,

ES
T, = = (sl+vez) :
ES
T, = —5 (€,+ve.)
2 l_vz 2 1
E8S
z - ———m— (X
Gl 12(1-1)2) ( 1+UX2) L
(7.1)
ESS
G2 = = 3 (X2+UX1)
12(1-v7)
E®
= =S, = ————
51 2 2(1l+v) ®
3
ES
= = Hy = =
B 2 7 12(1+v)

where because of the assumptions madse,
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Q/
[~

1ou 104
“L=13 "1 v+ W
138 . 1dv
2 Xk ttpe t v
~AQ fu\ Bo z>
“T"3¥d\a) 2 <B
X =-l§_(l§1)-_l_ééa_w_ > (7.2)
1 A da \A o ABzaBaB
x—-liGE)mL@@
2% "EB\BP/ T Fpox
T=-L(&-;§z§w_-;§m>
2B \3odp AdaOf B

Neglecting in equetions (6.2) all terms with 52/12 except
2 oA oA
8% 1 B(B 1> 8<A 1
for the term with — — |—l|>o—] + —| = =— in the last
12AB[aa A da o8 \B op
equation, giving according to equations (5.8) a value independent

of the curvature of the shell introcducing the new func-
tilons @ = CP(CL,B) and W =\|I(G,,B)

_lop 1oV

u'Aaa,+Baa
(7.3)

v o 109 19V

BO A

After certain transformatlons and simplifications of equa-
tions (6.2),
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2 |
29 2. . 2 2 2 1-y° 1[0 ol \
Vo oEP + 20oE(Ew) - (L-o)(ETE L = - L L2 () + & (A1)
1y 22y, ) L[ (i ). 2 )
2 Vo Ve ¥+ (1-0) AB[aa. (kl as> 3B ("zaa

2
1-v° 1 [ )
- sl e -5 o)

2,20 + (10)@, 2100 o+ (10 B[ (ke ¥)- & (i T]-

2 - 2
® 29 2 2 1-v
ﬁve Vew-Z[ZH -(l-v)K]w: - Z

(7.4) /

where ¢, V, and w are the required functions of the displace-
ments and are invariant (relative to the directions of the coordi-
nate curves _.a and B at a given point of the surface) magnitudes;

\762 and th are the differential operators of the second order

of the elliptic and hyperbolic type:

R .

L
2
y (7.5)
d
s>:| -

The mixed operstor HVe2 - Lth is defined by the equation
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(7.8)

Differential equations (7.4) form a complete system of equa-
tions in the three fundamental displacement functions ¢, V,
and w.

These functions according to equations (7.3) determine the
vector of total displacement of the point (a,8) of the middle
surface and therefore by virtue of equations (7.2) and (7.1) all
the deformations and the internal axlial forces and moments of the
shell.

Equations (7.4) are thus the fundemental equations of the the-
ory given here for thin shells and permit solutlon of the problem
of the equilibrium of elastic shells of small curvature by the
method of displacements.

The theory of thin shells can alsoc be presented in another
more compact form, namely, in the form earlier proposed of the
mixed method by introducing only two functions, the stress func-
tion @ and the displacement function w. Setting (for X = Y = 0)

_l19o /18 _1 B3
Tl"Bae<BBB)+AZBBa,Ba A

J 1o (1o0), 1 0A9¢ 7.7
T2 Aaa<Aaa>+ABzaeas (7.7)
S - -8 ___1_<§2_“’_-l.3l3.§9-l§é3_42)

1° 2 AB\CaOB AOCx OB B OB o J
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and bearing in mind the analogous eguations (7.2) for X;, X,
and T and equations (7.1) for G;, Gp, and Hy = - Hp, the
'general equations of equilibrium and deformations of the moment
theory of shells are represented in the form of two symmetrically
constructed differential equations:

1 2
% e Ve 29 - (2, —LYh Jw=0
(7.8)
2 __ 2 ES° 2. 2
- (Hve -LVh )Q-____?__Ve Vew+Z-o

1auf§)

These equations are a generalization of the equation of Max-
woll for the two-dimensional stress state of a plate and the equa-
tion of Sophle Germain - Lagrange for the case of the bending of a
plate, inasmuch as for kj = kz = O (the case of a flat plate)

they break down into the well-known equations from the theory of
elagticity

20 2
Ve Vo @ =0 .
oo 2 12(1-v7) (7.9)
e e 3
ES

in arbitrary (for Ve2

coordinates.

determined by equations (7.5)) orthogonal

If in the second of equations (7.8) the term with 53/12 is
neglected, the fundamental equation of the momentless theory of
shells results:

(BV,2-19,2)0 = z (7.10)

After determining the functions ¢ and w, +the forces Ty
and T, are found from equations (7.7), the moments Gy, Gp,
and H from equations (7.2) and (7.1).

These forces and moments will satisfy the equations of equil-
ibrium
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%(BT]_) ngi B (ASz) +Sl§§+ABk1N1+ABx=O \
g(AT) 1%*%(331)'222"“}”72*5“‘0

1 [a d
-(k1T1+k2T2)+—[E— (BN1)+‘B—B'(AN2{]+Z=0
d 3B _ > A !
— (BE - 22 - = (AG = =« ABN- = O
e ) TR 5o 5y GR) + G g - e
bo) oA OB
< (AH - H, =2 — (BGq —— ABN, = O
5p (P2 1BB+50,( ) - G + BBy

S1 + Sg + lel + szz =

(7.'1)1)

for X =Y =0 with an accuracy up to the terms ABkN; and
ABkoNo,  in the first two equations and the term kyH; + kzﬂz in
the last equation, which as magnitudes proportional to Lof>) /12
and k 83/12 (by virtue of the fourth and fifth equations of (7.11)
and the relations (7.1) and (7.2) for the moments) are taken equal
to-zero.

In neglecting in the first two equatlons the terms with kyN;
and koN5, &an error is admitted of the same order as that in the

general theory in replacing the last of equations (7.11) by the
approximate relation S; = - Ss.

For the transverse forces N; and Nj,

Ny = - __FL_LBE; v 2w
12(1- F) A
(7.12)
3
N = - _E_si._z_léé_vezw
12(1-1F) B oP

which constitute a generalization of the well-known equations of
the theory of the bending of a plate.
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8. Circular Cylindrical Shell. Particular Cases. - For the
coordinates of o and B, the distance to the point considered
. along the generator and the transverse arc, respectively, of the
middle surface are taken.

Then, evidently A =B = 1. Equations (5.8) for kl = 0 and
ko = 1/R = constant assume the form

\
A0=g:+g—;+k2w+v*
2 2 .
Ow Ow 2 ) .
Ay = = == 4+ == + K ow] + kow*
1 <aa2 332 2 2
) (8.1)

x2=’_<ﬁﬁzw 253) )

Equations (5.4) may be presented with the aid of table 1, con-
taining the differential operators.



TABLE 1
u(a,p) v(a,B) w(a,B) v*(a,B)
2 2 2 3 2 3
(A+2u) 2_3 Sy (A1) aSBB Nep 2 - (o) L g i_a;f x% 1y
X 2 2 3 8 33 > 1
L 2u) S— e _ A 2. S by
A\+1) S8 (A+2u) asz +u o (M+2u) kg % (A+3u) kg T aazap A 5 2 Y
d 52 3 8% 3%
>\k2 - - ()\+2p.) O\+2|J,) kz 2 2 }\kz - [ZK —
% % (M+2u) [:kz + & (it 8 V2V2> 12 B2 L,
82 83 Owdn) K 82 3 12 282 (o2 2 ®
+ = o A gtk
L 1E R 5 172 12 3% * “)<aa " e )]
.3 3 N 3 2.2 82 2 | 1
vN g N5 2 1—51‘2[2)\&1 +O\+2u)<aﬁz+kz >].(7‘-+2u)-u1;\7 g
(8.2)

14

TP2T WL VOVN
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In this teble X, Y, Z, and Z* denote free terms depend-
ing on the internal forces (my, eand mg are taken equal to zero).

. The differential operators referring to the corresponding func-

tions are indicated. These operators form & symmetrical differen-
tial matrlx. The elements of the matrix symmetrical with respect
to the diagonal terms have the same expressions, a consequence of
the theorem of reciprocal work.

For k2 = 0, equations (8.2) break down into the following
equations (likewise symmetrically constructed):

d%y a u ow* 1 \1
(A +2u) 7 + BB + (A ) BB + A <t a.x = 0
%u ofy B, w1 L |
AN+2 A =Y=0
(kfu) o396 + (A+2u) BBZ + u ai + 3 + 5 (8.3)
Su }\éll—-uvzw* + (vizu)e* - Lz -0
da oB 5
J
and the equation for the bending of & plate
(A+2n)5

Equations (8.3) are, in a certain sense, a generalization of
the problem of the two-dimensional stress state of a plate and per-
mit determining the stresses and the deformations of the plate
under the action of two mutually balancing concentrated forces

applled on the planes 7y = + l 5 and y = - l 5 and acting normal
to the middle surface. In the cage of the homogeneous problem,
the first two equations of (8.3) may be satisfied by setting

o
3a

Q 2
= =)\ — VO
v X'BB

u= - A Vz@

(8.5)

w* = (\+2u) VeV

where & =@ (a,B) 1s an arbitrary function. The last equation then
becomes
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vev2y2e . ) g2g2g co (8.6)
AN+2u

and therefore the function Vab - 4(\+u)/(A+2p) 18 biharmonic. .

The magnitudes u, v, and w* determine the strains e,
eggs  ©qps and .y and therefore the stresses OJ., 9 5 and
Tag * The remaining stresses, as in the genseral case of the shell,

must be found from the condition of equilibrium.

In the same manner as the particular case of equations (8.2),
there can be obtained the fundamental equations for the circular
arch with account taken of the extensional deformations of the arch
in the direction of the normal to its axis. In this case,the dis-
placement v must be considered equal to zero and the remalning
magnitudes u, w, and w¥ consldered only as functions of 8.
Equations, which generalize the well-known equations of Boussinesq,

are obtained.

For
o0 )
Ev
A =7 | 3
E
w= 2(1+v) 7

(where V is the Poisson coefficient), equations for the circular
cylindrical shell shall be obtalned in the three functions u, v,
and w. The last of equations (6.2) drops out and the remaining
ones, in passing to the relative coordinates so that A = B = R,
may be represented with the aid of table 2.




TABLE 2
u(a,p) v(a,B) w(a,B)
E_, 1w o 1+v P b & o2 1w 3%\ 1-0F 2
%% © a2 © 2 dadp X, 3> 2 B@B? EB
1+v 3° S i a2 S _3-v 2 3 1-0° -
2 OaoB 8;32 2 3,2 | OB 2 Emzaﬁ | E3
3 3 3 2 2
u3’--02<as Lo 2 >—a--3'ucz ag cz(v2v2+2'a—g+l>+1 -1 g%y
oc X 2 3002 OB 2 3a2dp 8 Rb

(8.7)
where
02 = iz—
2
12
zR , (8.8)
2 9 ) _
V = T3t %
oa” O

T?%2T WL VOVN

Le
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The system of the three equations (8.7) may be reduced to an
equivalent single equation of the elghth order. Following Galerkin
(references 7 and 8), the first two equations (8.7) may be substi-
tuted for X =Y = 0 by introducing a new function ¢ = ®(a,B)
end expressing in terms of this function the displacements u, v,
and w by the eguations

5 5 3 3
Y £ ¢>+ e 3%
d°  dadpt/ dadpt da
of 3% 3°0 X 3%
<50L4BB ' aa2a33> ") SEy T [ (69
4 4 4
Lo 3% %

dat aazaaz 854

The last of equations (8.7) assumes the form

" ’
cB(veve + 2v8 + 1)VVR - 2c2(1-u)<a : - 2 - vZo +
oa da.“oB

2 % _(1w9)e

Z =0
3t 12 EP

- (1-v

(8.10)

Equation (8.10) is the fundamental equation of the circular
shell. In this equation

4 4 4
2v2=a4+2 ) +a

\Y)
% 3o’ op

(8.11)

4

For comparison, there are presented the equatlions obtained on
the basls of the exlisting moment theory of Love. These equations,
glven for example in the book of Timoshenko, mey also be repre-
sented with the aid of table 3.



TABLE 3

l-v3 2

-——R2Z

E%

(8.12)

TPST WL VOVN

6%

4
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In comparing the equations of table 3 with equations (8.7)
(given in table 2), it 1s noted that in equations (8.12) there are
absent, in the first place, certain terms arising from the moment,

namely, the terms with c¢Z = 82/(12R?); in the second place, the
differential operators (of the second of the third equation and
third of the second) are asymmetric. The absence of symmetry in
equations (8.12) is in contradiction to the fundamental theorems
of the energostatic elastic body. For this reason, the existing
theory of shells starts from a number of classical problems of the
mechanics of elastic bodiles.

The previously mentioned defects of equations (8.12) may lead
to a fundamental error in the problem of the vibration of shells.
Given any three independent formg of vibration with the correspond-
ing displacements u, ¥, and W and applying the method of Gal-
erkin to equations (8.12), there is obtalned for the frequency of
the vibrations a cubical equation, which belng represented in the
form of a determinant of the third order (corresponding to the
mechanical significance of the problem) has an asymmetric struc-
ture. Due to this asymmetry, two of the vibration fregquencies for
arbitrarily chosen forms of u, Vv, and W may receive imaginary
values, & result that is likewise in contradictlon to the theory
of small vibrations of elastic bodles.

The absence of symmetry in the equations of the moment theory
of cylindrical shells was noted in previously published papers on
the theory of shells and thin rods (reference 10). In these
papers are gliven equations of the strength, the stability, and the
vibrations of shells of composite systems and rods possessing col-
lateral auxiliary differentlal operators of the required functions
of symmetric structure. The recent works on shells (reference 7),
which improve to a greater or less degree the mament theory, suf-
fer from the defects pointed out here.

9. Spherical Shell. Generalization of Fquation of Sophle-
Germain - Lagrange. - In this case,

ky = kp = k = 1/R = constant

E=k (9-1)

L=20
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- From ‘equations (5.8),

Ag = 6 + 2kw + wk w
A = - vaw - 2kaw + 2kw* <
, iy = - Ty (9.2)
Xy =Xg =0 R J

The systém (5.4) leads to an equivaleht system of the form

2 52 2 )

0 + 2(kﬂ1)kv W - (A+2u) kv 2y + AV =

123 a2
g [éa (BX) + 5 (AYﬂ

(N+2u)v56 + 2pk

52 52
2(A\+1)k6 - (}\+2p.) kv o+ ()\+2p) vzwz + o 2 KV oy 4+

4CK+p)k2w - (3A+2u) %E szw* + 2Akw¥ = & 4

»

2 2
AO - (3%&2p) — kV W + 2Akw - p ?—v w¥ + (A+2u)w* = l 2%
2 2
KK = - —— — Y--—AX
VX + 2u5ABaa() (:I
J
(9.3)

where 6 1is the volume dilation of the shell for the tangential
deformation and 2X is the normal rotation:

119 )
9=X§[&: (Bu) +$(AV‘):|

1|23 d (9.4)
X = Ezg-[?; (Bv) - 56 (Aué]

The symbol Vz_ is the differential operator of the second order
(operator of Beltrami for the sphere):




42 : NACA T™ 1241

T B [éa A BB B asjﬂ (9.5)

In deriving equations (9.3), 1 + k262/12 ~1 1s assumed
because of the smallness of the term k252/12 as campared with
one.

The first three equations of (9.3) form a complete system hav-
Ing a symmetric structure with respect to the functions 6, v4w,
and vzw*. The fourth equation, independently of the first three,
determines the normal elongation.

In the case of a closed spherical shell under the action of
normal rotation on the inner and outer surfaces for constant (inde-
pendent of a,B) intensitles of these pressures, the differential
terms drop out, X =Y =0 amd then

6=x=20 7

£ + NS = 2\ (9.6)

2hkw + (A+2p)w* = %;

where by virtue of equations (5.5) and (5.7)

+ % b W
= |(1+k7)2 c
7 i1
-.é.a
. (9.7)
1
) +§5
z* = | (1+7)¢ 70,
1lg
z% J

If w* 1s set equal to zero and correspondingly the third of
equations (9.3) 1s neglected, then for A= Ev/(1-v2), u = E/2(1+V)
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2 2, 82 .22 2. 1= 1 [3 ey . D
A" ] +'(1-v)k e - -Ekv V% + (14+0)kVw = - 5 15 |52 (BX) +als (AYE‘
g e . 5 - - T 2
-5 e 8 g2 —p)S 2 = =T
3 xVeo + (1+v)k6+12 vevdy + (1 \J)l2 K2v2w + 2(1+v)kKlw " Z f
2 2y . _Lxp 1 |3 .9 '
VX+ KX = - B [aa (BY) - 55 (Ax)J J
(9.8)

For k = 0, the first two of these equations break down into
the equation of Lamé

2
v - - 10 L [_a_ (BY) + ’a% (Axﬂ | (9.9)

which refers to the problem of the two-dimensional stress state of
a plate of thickness &, and the equation of Sophle-Germain-

Lagrange
3
veve = 2z ( -2 ) (9.10)
12(1-v°)

which refers to the problem of the bending of a plate.

By eliminating the function 6 from the first two equations
of (9.8), there 1s obtained

-———82— (veviylw + 4x2v%y2w) + k2 (Vey + Zkzw)w

12(1-F)
i SIS e+ 2 - b (o)

- 2(p 2 x[2 2 ¢ )
(1 v)k2z+v(z 12%[& (BX)+BB (AY)] J

Fquation (9.11) is the fundamental egquation of the spherical
shell with inextensible normal element and constitutes a natural
generalization of the equation of Sophle Germein -Lagrange for
the bending of a plate. .




44 : NACA TM 1241

Having determined the deflection w and the normal expansion
from the third of eguations (9. 8), the tangential displacements u
and v can be determined by the equations

2
v.:---—--;L——-:L%(6+21s;'w--ajzkvzw>+iz%’-g—’—‘+%%%§---]-'%XT
(1-v)K° 4 K B ESk Y
2
v=-——1—-2-laa <e+2kw-%k\72w>-—l§%§+%£g—w--l+v2Y
(1-v)K? B OF K PP mmt
(9.12)
where
2 2
___ % 2. ¥k 2,
12(1+v)k 6(1+v)
(9.13)

(1-v)5 1 1
128 AB aa (B) + 55 (Axi] * Fox ©

The theory of the spherical shell for thick shells (equa-
tions (9.3)) as well as for moderately thick shells (equations (9.8)
and (9.11)) have been presented. The fundamental functions chosen
o, w, X, eand w* are Invariant relative to the direction of
the coordinate lines «,B passing through a given point on the
sphere.

It follows that the equations given are valid for any system
of coordinates on the spherical surface. The choice of coordlnates
determines only the differential operator Vz. If for the coor-
dinates «,B the geographical coordinates were taken, taking a
as the latitude and B as the longitude, then for k = 1/R, A=R
end B = R sin a 8o that

2 2
2 _ 0 o) 1 ) ) _
v (au‘2 + cot a 5; + gzzgi; SB§ (9.14)

For an arbitrary load (nonsymmetrical problem), equations (9.3)
and in the particular case (for w* = 0) equations (9.8) or (9.11)
are lntegrated by the method of separation of variables with
reapect to the varieble B in trigonometric functlons and with
respect to the variable o In Legendre functions.
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10. General Equations for Stability of Shells - Special Cases. -

It is assumed that the shell has a given system of stresses char-
acterized only by the tangential (normal and shearing) forces 140,
Tzo and 89 and in equilibrium with the external forces. It
shall be considered that the externmal forces are glven with an
accuracy up to one parameter, for example, the Intensity of any

" of the components of the extermal load. By assigning different
values to this parameter, different stress states are obtalned.

In a particular case, the internal forces Tlo, Tzo,_ and SO
may be proportional to the intensity of the external load. For a
certain value of the load parameter, the equllibrium of the shell
becomes unstable.

From the stress state Tlo T,0, and SO, the shell passes
to another state T10 + T3, T20 +Tp, S0 +8, G, Gz, H, Ny,
and N, where Ty, Tp, . . ., Ny are internal forces arising
on the loss of stabllity. It shall be assumed that the forces Tj,
T, « « - 5 Ny and the corresponding deformations are infinitely
small magnitudes. Because the change 1n the deformed state of the
shell, associated with loss in stability, is characterized by a
change 1n form of the middle surface, it 1s necessary, in order to
obtain the equations of stability, to take into account the varla-~

tions of the magnitudes referring only to the second-guadratic form
of the surface.

The stability equation is obtained from the equations (6.2)
and (6.3) given for shells of medium thickness or from equa-
tions (7.4) for thin shells. It is necessary in the first place
to refer all static and klnematic magnitudes entering these equa-
tions to varlations of the stress and the deformed state of the
shell that arise on loss of stablility and in the second place to
conslder the components X, Y, and Z as those surface forces
that are obtalned when an element of the shell AB do df with the
contour forces T;0 + Ty, T30 + Ty, SO+ s, . .. 1s carried
into the new deformed state determined by the displacements wu, v,
and w.

With the passage of the shell into the deformed state, the

normal to the middle surface will have a new direction determined
by the angles of rotation

q_l = k]_u -

el L
wie &1

ow

: ' (10.1)
x)

q_z = - <k2'v' -
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relative to the tangents to the lines o« = constant and B = constant
- of the initial state. For the components X, Y, end Z of the
vector of the reduced surface force on the axes of coordinates a,

B, and 7y of the movable trihedron of the middle surface, small
magnitudes are readily obtained with an accuracy up to second order

i
1
i
Pt
w
l-l
=1

]

i
&
SN’

[
|
o

+

7N
8l
4
]
W |
ity
g
mO
1

X
Y= —kz[(kzv-%gwﬂ-)Tzo +(k1u--§—:->30]
» (10.2)
Z=-i iB[(ku-.l;iw_)Tlo+<kzv-——)so] -
AB |3 A da B OB

9 _L\po0 -.1_§.w_) 0

By substituting the values of X, Y, and Z thus obtailned
in equations (6.2) and neglecting in these equations m, &and mg,
the general equation of stability of the shells is obtained. 1In
the case of & thin shell, X, Y, and Z must be substituted in
equations (7.4).

In elther case, there ls obtalned with the accuracy of the
" load parameter a complete system of homogeneous differential equa-
tions in the required functions that determine the deformations of
the shell associated with loss in stebility. To this system are
added the boundary conditions (homogeneous).

The critical stress state Tlo, Tzo, and SO determined by
the parameter of the external load entering linearly in equa-
tions (10.2) is thus determined by solving the homogeneous boundary
problem described here.

Inasmuch as of the three wvariables u, v, and w the normal
displacement w has the principal effect on the change in shape of
the shell, in equations (10.2) the terms with the tangential dis-
placements u and v may be neglected. Then
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\
1w 1 ow
rem(mOiies0ll)
13w o ldw
ree (05501 E) L
-1f2 (o3 ®), 2 (o2dn), 2 (i), 2 oaw)}
'Z'As{aa< AB&) 3 (Tz A3 +Ba.(s 3/ "3 ' )
| (10.3)

In the case of a thin shell,the components X and Y, being
proportional to the curvatures k; and ky, may be taken equal to

zero. On the basis of equations (7.8)

1,22 2 2 w
=% Vo @ - (EVy" - LV, “)w = O

V

3
2 2 E® 2. 2 1{3 ( 0B dw
- (HV “- LV - ——— Y —_ =
(BV, - 1V, )w 12(1-v2) o Vo W + [; Ty T o

$(35)- 25 5 E)-0

(10.4)

These equatlions constitute the general equations of atability
of thin shells in the two functions ¢ and w and permit deter-
mining the critical stresses for very general assumptlions with
regard to the glven stress state.

The general theory of the stabllity of shells has been pre-
sented exactly as given by equations (10.2), (6.2), and (6.3) and
approximately as given by equations (10 3), (7 4) or (10.4).

This theory represents & considerable generalization of a num-
ber of problems on stabllity of elastic systems, starting with the
simplest problem of longlitudinal bending and ending with the sta-
billity of shells of arbltrary shape for arbitrarily glven initial
stress state T0 = Tlo(a,B), Tzo = Tzo(a,B), and 80 = So(a,B),
the critical value of which is determined.
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Thus, for exsmple, in equations (10.4) setting ky = ky = O,
from the second equation (the operator

. kq+k k, -k
Hvez - LYhZ B e ve2 -1 th becomes zero), the

equation of stability of a plate In arbitrary orthogonal curvilin-
ear coordinates o and P are obtained. For

A=B=1
31,0 30
o OB

]
(@)

0
oTz" 30
+—

oB da

i
o

there is obtained

3 2 2 2
——EQ—Z—- V¢ - 7,0 a—‘é’ S1,09¥ _2509¥ _ 5 (10.5)
12(1-v%) o B

Equation (10.5) is the well-known equation, in rectilinear
coordinates, of the stability of a plate loaded by forces on the
boundary.

For k; =k, = k = 1/R = constant, S0 =0, and

7,0 = 7,0 = -pR/2 = constant, the following eguation is obtained:

ft

252 3
R4S 2_2_2 2 R 2

S Ve Ve e VW VoWt o Vw0 (10.6)
12(1-v

which refers to the stability of a spherical shell of radius R,
under an internal pressure p = constant, the parameter of this

equation being p.

A cylindrical shell will be considered, starting at first
from the more accurate equations (10.2) and (8.7). If o and
are the absolute coordinates, A = B = 1. ZEquations (10.2) for
kl = 0 and ké = constant become
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ow ow
_2 [podw g0 _'a_z)] 210 2 . 1,0 ( -3_!]
Z = $ [Tl ad. S (kz Bﬁ + BB S aa T2 k2v aﬂ) J
(10.7)
am° 350 or0 g0

+ = =0, =—— +=—2=0, and A=3B =R (hence
d O B X
o and B are relative coordinates), equations (10.7) become the
following:

x -0 )

vy=-21 |r0 (v - §E> - g9 éﬁ]

1 |p ot Oi(-a_w.) p w3
Z Rz [%l Baz Tz 56 v aB + S aaBB 3 J

On the basis of eguations (10.8), table 2 (equations (8.7))
assumes the form given by table 4. Equations (10.9) (table 4) in
the secondary operators possess alsc in thils case a symmetrical
structure, a fact that as already noted 1s in agreement with the
theorem of recifrocity and therefore the critical forces will
always be real.

>(10.8)

it

lrhe equations that are used by Timoshenko (reference 3) and
other authors (references 7 and 8) are assymetric with respect to
the secondary terms and consequently do not correspond to the funda-
mental theorems of the theory of elasticity.



TABLE 4

u(u.,B)

& 1w

_—

L 3%
2 dadp

3
uz_cz(g__;;z
da P 2 Babﬁz
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These equations are the general egquations of stability of a
circular shell, obtained in strict correspondence with the funda=-
mental hypotheslis of Kirchhoff - Love and make it possible to con-
- 8lder a number of problems of practical interest on the determina-
tlon of the critical loads of the shell.

Because the components X, Y, and 2Z determined in the gen-
eral case of the stress state by equations (10.8) are obtained
with account teken of the exact values of the angles of rota-
tion gy and gy of the normal of the shell, equations (10.9)

are applicable also to shells of medium thickness.

In the case of a shell for which 5/R <1/30, the tangential
contour force Y represents, according to equations (10.7), a mag-
nitude that is small in comparison with the normal force Z. The
tangential contour displacement v on deformation of the shell
accompanied by the change in shape of the cross section 1s a mag-
nitude that is likewise small compared with the normal displace-
ment w. By assuming for a thin shell the magnitude Y +to be
equal to zero and neglecting in the last of egquations (10.8) the
tangential displacement v,

_ 1 {3 (nodw oa_w> i(oa_z oa_w>]
Z-Rz [aa(Tl ot ) T2 5t 5 (10.10)

The general stability equation of a shell for given assumptions
as to the force Y may be obtailned from equation (8.10) by sub-
stituting in this equation the value of Z determined by equa-

tion (10.10). This equation has the form® 3
4 4
c2(v4+2v241)v40 - zcz(l-u)(a - 2 z> V2o + (1-v2) .a.‘% -
da-  da B > }

2
_:Lﬂ___é_('ro.?_v% g0 9 v _B__(Toﬁ_v"dp s°ﬁ.v%}=o
EB{Ba,laa MY )+agzas TP e ) J

(10.11)

21f 1n equations (10.11) the second and third terms of the
first component and the camplete second component are neglected,
the approximate equation for the stability of a thin cylindrical
shell shall be obtained.
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_ Equation (10.11) for these assumptions is equivalent to the
system of equations (10.9) in the three functions. The displace-

ments u, v, and w are determlned in terms of the fundamental

function ® by equation (8.9). It should be noted that

Tz =89 = 0, that is, in the case of the stress state character-

ized only by longitudinal normal forces Tl (central compression,
for example, pure bending, eccentric actlion of longitudinal com-
pressive or tensile forces, and so forth), these assumptions drop
out. The equations glven here are the general equations of the
stability of a cylindric¢el shell from which the critical stress
can be determined for very different assumptions both as regards
the given external forces and as regards the boundary conditions.
Thus, for example, the equations of stability can be obtained for
the following cases: '

1. Central compression of a shell by a force P

3. Shells under the action of an external normal pressure and
immovably clamped at the longitudinal edge agalnst displacements u
and w

0 0
Tl =8SY = 0

Tzo = - q_R

4. Shells under the simmltansous action of a longitudinal com-
pressive (or tensile) force P and twisting moment M

Tz =0

0 P
A .
1 “¥om
g0 - M

ZstR2
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In this case for the load parameter, there may be taken the
magnitude P for a given value of the magnitude M or M for .a
glven value of P, or the ratio of these values as a funotion of
the conditions of the problem :

5. Shells under the action of only a single bending moment
(pure bending) or of a moment and a longlitudinal force (bending
with tension or compression)

6. Shells under the action of a transverse load producing at
the sections a = 8nstant longitudinal, norm&l, and shearing
forces Tlo end S determined by the usual elementary theory

of the bending of beams, end so forth

In all of these cases except cases 5 and 6 the differential
equations of sgtability have constant coefficients.

The critical stresses are determined by solving the homogen-
eous boundary problem by equetion (10.11) or in the case of a more
accurate solution by the system of equations (10.9) and the homo-
geneoug boundary condltions. If the shell of length 1 on each
of the curvilinear edges o = 0. and a = !/R is hinge-supported
on a diaphragm that is rigid in 1ts plane and flexible in the trans-
verse plane, the function ¢ corresponding to these boundary con-
ditions mey be approximsted for the closed shell in the form of a
double trigonometric series:

= :g:_jg: Ayn 8in mﬁﬁm

and for ahells of open profile in the form of a trigonometric series
in only one variable a:

cos nf (myn=1,2,3, ...)

¢ =§: Vn(B) sinml? (m=1,2,3,...)

where the function Wm(B) is determined by ordinary differential
equations (homogeneous with one parameter) and the boundary con-
dition (likewilse homogeneous), which must be given on the straight
edges of the shell.
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REMARKS

The theory given 18 of general character and permits solving
a number of practically important problems on the strength, the
stability, and the vibrations of shells. Thus for example:

1. Computation of shells by the method of the theory of com-
plex variables. - In reference 12, it is shown that for shells char-
acterized by middle surfaces of the second order with positive
Gaussian curvature (spherical, elliptical, and parabolical) the
equations of the momentless theory characterized by the mixed 4if-

ferential operator ]E[Ve2 - Lvh2 leads, through transformation of

the independent variables, to the Cauchy-Relemann equations.

These investigations show that the more accurate equations (7.8)
relative to the moment theory of thin shells will be of the ellip-
tic type for middle surfaces of the second order. These equations
for such surfaces also lead to the equations of Cauchy-Rlemenn.

It then follows that the computation of such shells by the moment
theory may be effected by the methods of the theory of functions
of a complex variable by developing and generelizing the known
methods of Muskhelishvili (reference 13) on the two-dimensional
problem of the theory of elasticity. In particuler, it is of
interest to determine the stresses and the deformations of shells
of spherical, elliptic, and parabeclic types due to the action of
a concentrated force applied at any polint of the middle surface.

2. Circular cylindrical shell under the action of a concen-
trated force. - The solution of this problem may be obtained by the
integration of equation (8.10) or for the thin shell of equa-
tions (7.8) by the method of separation of variables. (In this case

HVe2 - L%2 = ky §LE") The functions required may be approximated

Sa .
by trigonometric series in one of the variables o or B, as in
the method of Fallon-Ribier for the two-dimensional stress state of
a rectangular plate and In the method of Morris-Levy for the case
of the bending of such a plate. The Green Function may be reprs-
gented by a Fouriler Integral.

3. Tenslon in a cloged clrcular shell having somewhere on the
surface an openlng of given shape.

4, Torsion of a circular shell weakened by an opening. - Both
of these problems may be solved also with the aid of trigonometric
geries.
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5. Stability of an open circular shell in the case: (a) cen-
tral compression, (b) pure bending, (c) compression with bending,
and (d) bending by glven transverse forces. - This problem is
solved by applying to the stability equations given ordinary trig-
onometric series in the variable along the generator.

6. Stabllity of a closed circular shell in torslon. - The
required functions in this case can be given in the form of trig-
onometric series in the variable B (in the direction of the trans-~
verse arc). :

7. Stabllity of a spherical shell under the action of an external
hydrostatic pressure. -~ The differential equation corresponding to
this problem can be integrated by the method of separation of the
veriables by applying trigonometric functions and functions of
Legendre.

Translated by S. Reilss
National Advisory Committee
for Aeronautics.
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